Fast and robust parameter estimation for statistical partial volume models in brain MRI.

نویسندگان

  • Jussi Tohka
  • Alex Zijdenbos
  • Alan Evans
چکیده

Due to the finite spatial resolution of imaging devices, a single voxel in a medical image may be composed of mixture of tissue types, an effect known as partial volume effect (PVE). Partial volume estimation, that is, the estimation of the amount of each tissue type within each voxel, has received considerable interest in recent years. Much of this work has been focused on the mixel model, a statistical model of PVE. We propose a novel trimmed minimum covariance determinant (TMCD) method for the estimation of the parameters of the mixel PVE model. In this method, each voxel is first labeled according to the most dominant tissue type. Voxels that are prone to PVE are removed from this labeled set, following which robust location estimators with high breakdown points are used to estimate the mean and the covariance of each tissue class. Comparisons between different methods for parameter estimation based on classified images as well as expectation--maximization-like (EM-like) procedure for simultaneous parameter and partial volume estimation are reported. The robust estimators based on a pruned classification as presented here are shown to perform well even if the initial classification is of poor quality. The results obtained are comparable to those obtained using the EM-like procedure, but require considerably less computation time. Segmentation results of real data based on partial volume estimation are also reported. In addition to considering the parameter estimation problem, we discuss differences between different approximations to the complete mixel model. In summary, the proposed TMCD method allows for the accurate, robust, and efficient estimation of partial volume model parameters, which is crucial to a variety of brain MRI data analysis procedures such as the accurate estimation of tissue volumes and the accurate delineation of the cortical surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust MRI brain tissue parameter estimation by multistage outlier rejection.

This article addresses the problem of the tissue type parameter estimation in brain MRI in the presence of partial volume effects. Automatic MRI brain tissue classification is hampered by partial volume effects that are caused by the finite resolution of the acquisition process. Due to this effect intensity distributions in brain MRI cannot be well modeled by a simple mixture of Gaussians and t...

متن کامل

Brain Volume Estimation Enhancement by Morphological Image Processing Tools

Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI) is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. St...

متن کامل

Partial Volume Segmentation

The literature about partial volume (PV) segmentation of MR images is rather limited, and a general methodology for robustly classifying images with severe partial voluming that works well in all cases, remains an open issue. In this paper, we present a statistical framework for PV segmentation that contains and extends existing techniques. We think of a partial volumed image as a downsampled v...

متن کامل

Estimation of the partial volume effect in MRI

The partial volume effect (PVE) arises in volumetric images when more than one tissue type occurs in a voxel. In such cases, the voxel intensity depends not only on the imaging sequence and tissue properties, but also on the proportions of each tissue type present in the voxel. We have demonstrated in previous work that ignoring this effect by establishing binary voxel-based segmentations intro...

متن کامل

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2004